Titanium Substitution in Silicon-free Molecular Sieves : Anatase-free TAPO₄-5 and TAPO₄-11 Synthesis and Characterisation for Hydroxylation of Phenol

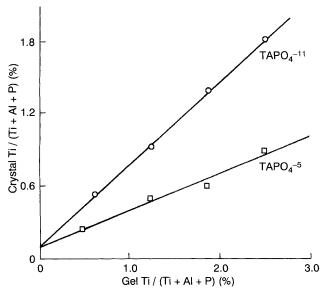
N. Ulagappan and V. Krishnasamy*

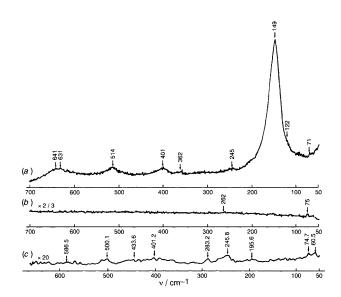
Department of Chemistry, Anna University, Madras 600 025, India

Titanium-substituted ALPO₄-5 and ALPO₄-11 are synthesised using a modified procedure; they catalyse the hydroxylation of phenol to the extent of *ca*. 32%, with good selectivity to catechol.

Titanium-containing molecular sieves are of current interest in zeolite science, with respect to redox catalytic behaviour.¹ After the patented report on the synthesis and properties of TS-1,² there has been increased interest in the titanium-containing materials.^{3–7} Ti substitution is well established in the topologies of MFI, MEL,³ BET,⁴ ZSM-48⁵ HMS and MCM-41.⁶ Recently, Ti substitution in SAPO₄-5 (TAPSO₄-5) was reported by Tuel et al.7 In all these molecular sieves the environment around titanium consists of silicon and it is believed that Ti-O-Si bonds are essential for redox catalytic activity.7 Ti substitutions in the aluminophosphate (ALPO₄) are expected to result in Ti-O-P bonds.⁸ Since aluminophosphates are more hydrophilic than silicalites, different chemistry and selectivity can be expected. Ti substitution in ALPO₄ molecular sieves has been claimed,⁹ but the position of substitution and the extent of catalytic activity are not known.¹⁰ Ti substitution in pure ALPO₄ is reported to be difficult and requires modification of the procedure for gel preparation, without modifying the gel composition; this also can lead to an anatase-free phase. We now report the direct synthesis of titanium-substituted ALPO₄-5 and ALPO₄-11 molecular sieves free from anatase, their properties and their catalytic activity in the hydroxylation of phenol.

TAPO₄-5 and TAPO₄-11 were prepared from the gel composition R: $xTiO_2$: Al₂O₃: P₂O₅: 40H₂O, where R is triethylamine or tripropylamine for AFI topology and dibutylamine or dipropylamine for AEL topology, and x varied from 0.02 to 0.125. The preparation of gel A and solution B is typical. Gel A was prepared by soaking aluminium isopropoxide (28.6 g) in water (35 ml); the mixture was kept overnight and homogenised for 2–3 h. Solution B consisted of water (10 ml) and phosphoric acid (8.9 ml), to which titanium tetrabutoxide (2.4 ml; x = 0.1) was added, followed by 30% H₂O₂ (2.4 ml), which resulted a clear dark orange solution in 10 min. Solution B was added to gel A, followed by the addition of the appropriate template. The resulting gel was heated between 150




Fig. 1 Molar Ti content in gel vs. crystal TAPO₄-5 and TAPO₄-11 samples

and 200 °C in a 300 ml stainless steel autoclave. The well crystallised TAPO₄s were obtained 2–4 h earlier than $ALPO_4s$.

The extent of Ti incorporation into the crystal lattice depends on the gel composition (Fig. 1). The ratio Ti/(Ti + Al + P) is lower in the crystal lattice than in the gel, especially for AFI, though higher values have been reported for TAPSO₄-5.⁷

Peaks at 230 nm in the diffuse reflectance spectra indicate that Ti^{4+} is in the tetrahedral positions and the absence of a peak or shoulder at 330 nm suggests the absence of anatase.¹¹ The absence of a strong peak at 140 cm⁻¹ in the Laser–Raman spectra¹² of calcined TAPO₄s confirms the absence of anatase (Fig. 2). A shoulder at 1040 cm⁻¹ in the FT–IR spectra of calcined TAPO₄ and its absence in that of ALPO₄ is assigned to the presence of Ti in the framework.

²⁷Al and ³¹P MAS NMR spectra of TAPO₄-5 and TAPO₄-11 show a single symmetrical peak with spinning side bands confirming Al and P in tetrahedral positions. SEM showed that the particles formed agglomerated rectangular polycrystals with

Fig. 2 Laser–Raman spectra of (a) 2% (m/m) anatase and TAPO₄-5, (b) calcined TAPO₄-11 (1.46) and (c) calcined TAPO₄-5 (1.68)

Table 1 Direct hydroxylation of phenol by $TAPO_4-5$ and $TAPO_4-11$ with dilute hydrogen peroxide^{*a*}

Catalyst	Ti (mol%)	Phenol conversion (%)	Yield (mol%)	
			Catechol	Hydroquinone
ALPO ₄ -5	0.00	4.5 ^b	0.8	
TAPO ₄ -5	0.90	13.2 ^b	9.3	
	1.68	17.1	11.5	5.0
TAPO ₄ -11	0.91	25.8	17.6	7.9
	1.46	32.2	21.3	10.5

^{*a*} Reaction conditions: H_2O_2 /phenol molar ratio = 3, catalyst 200 mg, phenol 1.9 ml, 30% H_2O_2 5 ml, water 5 ml, T = 80 °C, 5 h. Products were homogenised by acetone and analysed by HP-5890 GC (OV-17 column). ^{*b*} Other products were not identified.

spherical shape with sizes in the ranges $22-25 \ \mu m$ and $5-8 \ \mu m$ for TAPO₄-5 and TAPO₄-11, respectively.

Titanium substitution in the framework of TAPO₄ was evident from the direct hydroxylation of phenol (Table 1). Hydroxylation occurs to the extent of 32.2% and 17.1% for TAPO₄-5 (1.68 Ti mol%) and TAPO₄-11 (1.46 Ti mol%), respectively. The catalytic hydroxylation by TAPO₄ was comparable to that of TS-1.¹³

N. U. thanks UGC (India) for a fellowship.

d

Received, 1st November 1994; Com. 4/06680D

References

- 1 R. A. Sheldon, Top. Curr. Chem., 1993, 164, 21.
- 2 M. Taramasso, G. Perego and B. Notari, US Pat., 4410501, 1983.
- 3 J. S. Reddy, R. Kumar and P. Rathnasamy, Appl. Catal., 1990, 58, L1.

- 4 M. A. Camblor, A. Corma, A. Martinez and J. Perez-Pariente, J. Chem. Soc., Chem. Commun., 1992, 589.
- 5 D. P. Serrano, H. Li and M. E. Davis, J. Chem. Soc., Chem. Commun., 1992, 745.
- 6 P. T. Tanev, M. Chibwe and T. J. Pinnavala, Nature, 1994, 368, 321.
- 7 A. Tuel and Y. Ben Taarit, J. Chem. Soc., Chem. Commun., 1994, 1667.
- 8 E. M. Flanigen, R. L. Patton and S. T. Wilson, in *Innovation of Zeolite Material Science*, ed. P. J. Grobert, W. J. Mortier, E. F. Vasant and G. Schulz-Ekloff, Elsevier, Amsterdam, 1988, 313.
- 9 B. M. T. Lok, B. K. Marcus and E. M. Flanigen, US Pat., 4500 651, 1985.
- 10 K. A. K. Lott, T. Nakamura, E. L. Short and C. R. Theocharis, *Catal. Lett.*, 1989, **3**, 371.
- 11 T. Blasco, M. A. Camblor, A. Corma and J. Perez-Pariente, J. Am. Chem. Soc., 1993, 115, 11800.
- 12 A. Zecchina, G. Spoto, S. Bordiga, A. Ferrero, G. Petrini, G. Leofanti and M. Padovan, in *Zeolite Chemistry and Catalysis*, ed. P. A. Jacobs, N. I. Jaeger, L. Kubelková and B. Wichterlová, Elsevier, Amsterdam, 1991, 251.
- 13 D. R. C. Huybrechts, P. L. Buskens and P. A. Jacobs, J. Mol. Catal., 1992, 71, 129.